Arranca en Japón un nuevo acelerador de partículas, con la participación del IFIC

26/04/2018

SuperKEKB, la máquina que aspira a batir el récord de colisiones entre partículas por segundo –medida que los científicos llaman ‘luminosidad’–, ha registrado a primera hora de hoy, día 26, las primeras colisiones entre electrones y positrones gracias a Belle II, un experimento que busca respuestas en torno al origen y composición del Universo. El Instituto de Física Corpuscular (IFIC-UV/CSIC) forma parte de esta colaboración internacional en la que participan 25 países.

Los electrones y sus antipartículas, los positrones, acelerados y almacenados por el acelerador SuperKEKB, han colisionado por primera vez a las 00:38 horas del 26 de abril en Tsukuba (Japón). El detector Belle II, situado en el punto donde se producen las colisiones, ha registrado la aniquilación que se produce entre los haces de electrones y positrones, y que produce otras partículas incluyendo parejas de quarks y antiquarks beauty (‘belleza’ o simplemente b), uno de los quarks (los ladrillos que componen la materia) más pesados. Son las primeras colisiones que se registran en el acelerador de la Organización para la Investigación en Física de Altas Energías con Aceleradores (KEK), de Japón, desde que la máquina anterior (KEKB) finalizase sus operaciones en 2010.

El detector Belle II ha sido diseñado y construido por una colaboración internacional de más de 750 investigadores de 25 países, entre ellos España. Comparado con su predecesor (Belle), el nuevo detector ha mejorado enormemente su capacidad, y puede detectar y reconstruir eventos a una velocidad mucho mayor, aprovechando que SuperKEKB tendrá 40 veces más luminosidad (medida del número de colisiones) que el anterior acelerador. Se esperan obtener 50.000 millones de eventos de colisiones entre mesones B y anti-B (partículas compuestas por un quark y un antiquark b), 50 veces más que el total de datos obtenido en el anterior proyecto KEKB/Belle que funcionó durante 10 años.

SuperKEKB y el detector Belle II están diseñados para buscar ‘nueva física’ más allá del Modelo Estándar, la teoría que describe las partículas elementales que componen la materia visible del Universo y sus interacciones. Belle II abordará la búsqueda de evidencias de la existencia de nuevas partículas que podrían explicar por qué el Universo está dominado por la materia y no por la antimateria, cuando debieron producirse en iguales cantidades tras el Big Bang, y responder otras cuestiones fundamentales para el conocimiento del cosmos.

A diferencia del Gran Colisionador de Hadrones (LHC) del CERN en Ginebra (Suiza), el mayor y más potente acelerador de protones del mundo, SuperKEKB está diseñado para ser el acelerador con mayor luminosidad, una medida del número de colisiones potenciales en un acelerador por unidad de superficie en un periodo de tiempo. Así, SuperKEKB lidera lo que se llama ‘frontera de la luminosidad’, y espera batir el récord de luminosidad logrado por su antecesor KEKB en 2009..

Carlos Mariñas, doctor por el IFIC y actualmente en la Universidad de Bonn como coordinador adjunto del funcionamiento de Belle II, asegura que “detectar las primeras colisiones es un gran logro de los equipos involucrados en el proceso de puesta a punto de los haces durante los pasados meses. La gran experiencia de los físicos de aceleradores japoneses nos ha llevado a este punto en muy poco tiempo, permitiéndonos encender progresivamente Belle II sin riesgo para el experimento. Ahora está en manos de los físicos que trabajan en el detector sacar lo mejor del potencial de descubrimiento que esta excepcional máquina pone a nuestro alcance, y estamos dispuestos a aceptar el reto”.

El Instituto de Física Corpuscular (IFIC, centro mixto CSIC-Universitat de València), el Instituto de Física de Cantabria (IFCA, centro mixto CSIC-Universidad de Cantabria) y el Instituto Tecnológico de Aragón (ITAINNOVA), participan en el diseño, construcción, instalación y operación de DEPFET, un nuevo detector para el experimento Belle II.

El IFIC de Valencia participa desde hace más de una década en el desarrollo de DEPFET, coordinando primero las pruebas con haces de partículas y luego la estrategia de refrigeración del detector, resultado de la tesis doctoral de Carlos Mariñas, actualmente en la Universidad de Bonn y uno de los responsables de la operación de Belle II. Además, el IFIC ha diseñado y producido la electrónica para comprobar el correcto funcionamiento de los diferentes módulos de DEPFET una vez ensamblados en Belle II.

FOTO: Instalación del detector Belle II. Créditos: KEK/N.Toge

https://www.youtube.com/watch?v=uzYIvgkmlE8